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Abstract - We propose a new method for image segmenta-
tion based on a variational regularization algorithm for 
image denoising. We modify the Rudin-Osher-Fatemi 
(ROF) model in [1] by minimizing the pL -norm of the 
gradient, where 0>p  is very small. The result is that we 
better preserve edges, while flattening regions away from 
the edges. This results in an automatic segmentation of the 
image into several regions, which does not require any 
prior knowledge about the number of those regions, or 
their intensity levels. 
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1 Introduction 
  Two of the basic problems in image processing are 
denoising and segmentation. They are closely related, with 
similar objectives: given a noisy image, return a noise-free 
image while preserving important information from the 
original. Perhaps the greatest amount of information in an 
image is contained in the edges of objects. Consequently, 
preserving edges in an image is of paramount importance 
for both denoising and segmentation. One can regard the 
two problems as differing only in degree: in denoising, one 
seeks to remove noise and as little else as possible, while in 
segmentation, the goal is to remove all variation except for 
the edges of image regions. 

Thus it is not surprising that there are models that are used 
for both problems. The best-known example of this is the 
Mumford-Shah functional [2]. A noisy image d defined on 

2R⊂Ω is denoised by computing the minimizer of the 
following functional:  
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Here, Γ represents the union of all edges in the reconstruc-
tion u. The first term of (1) is a regularization term; it en-
sures that the denoised image will be smooth on each com-
ponent of ΓΩ \ . The second term penalizes the total length 
of the curves making up the edge set Γ, which keeps the 

noise of d from inducing spurious variation in the edges. 
The final term is a data fidelity term, which keeps the result 
close to the original image. The parameters ν and λ allow 
one to adjust the relative effect of the terms. 

In [2], Mumford and Shah regarded the minimizer of FMS as 
a segmentation of d, though it more closely resembles 
variational denoising methods that have been developed 
since. For segmentation, a more common approach is to 
assume that u in (1) is piecewise constant, an approach also 
considered in [2]. An interesting special case is where u 
takes on only two values, say 0 and 1. Then u is the charac-
teristic function of a set E, and the perimeter of E is the 
total variation of u: 
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Note that the regularization term of (1) is now zero, and we 
can subsume ν into λ. This functional is exactly that of the 
Rudin-Osher-Fatemi (ROF) model [1], a popular denoising 
method. We thus have that binary-value Mumford-Shah 
segmentation is the restriction to binary functions of 
Rudin-Osher-Fatemi denoising. 

2 Total p-variation segmentation 
 In this work, we simultaneously modify the regulari-
zation of edges and the image away from the edges, by 
introducing a small exponent 0>p : 
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This has two effects. First, small but nonzero values of 
u∇  are penalized more, which makes the minimizer tend 

to be piecewise constant. We thus obtain segmentation 
without explicitly assuming a particular form for u. (This is 
the same phenomenon as the well known “staircasing” 
artifact of the ROF model, taken to a greater degree.) Sec-
ond, the penalty on the length of edges is replaced by a 
penalty on a )2( p− -dimensional measure of the edges. To 
be specific, it is shown in [3] that if u is the characteristic 
function of E, then unless the boundary of E has upper 



box-counting dimension at least p−2 , the discretization 

of pu∫ ∇  tends to zero as the grid size tends to zero. In 
practice, given a positive grid size, the discretization of 

pu∫ ∇  places some penalty on edges, but it is much 
weaker than that of total variation. This allows the segmen-
tation to capture the boundaries of complicated regions 
more accurately. 

3 Implementation 
 To compute a minimizer of (3), we use a straightfor-
ward generalization of the fixed-point method of Vogel and 
Oman [4]. Consider the Euler-Lagrange equation of 

)(min uFpu : 
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We solve (4) iteratively, by substituting the previous iterate 
1−nu  into u∇ , then letting un be the solution of the result-

ing linear equation: 
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Also, to avoid division by zero, we approximate 1−∇ nu  by  

ε+∇ −
2

1nu  for a small ε (namely 10-6 in the examples 

below). We typically begin the iteration with du =0 , the 
noisy image. 

We discretize the problem with a uniform, rectangular grid 
with spacing ∆x. We consider u and d to be in vectorized 
form: if the images are of size nm× , then u and d are 
vectors of length mnN = . Let Dx, Dy be the matrices rep-
resenting the finite-difference approximations of differen-
tiation with respect to x and y. To be specific, we use for-
ward differencing with Neumann boundary conditions. 
Thus, (5) takes the form 
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where 1−nQ  is a diagonal matrix with entries 
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We solve (6) with a preconditioned conjugate gradient 
method. 

We do not prove convergence. Moreover, this procedure 
can only be expected to produce a local minimum, owing 
to the nonconvexity of (3). However, in hundreds of exam-
ples we have always observed convergence, unless ε is too 

small, in which case the system (6) can become numeri-
cally singular. We have no way of knowing whether the 
computed minimizer is local or global, but in our experi-
ence it is always a sensible reconstruction. 

4 Results 
 First, we consider an image of a football (Figure 
1(a)). It is not very difficult to separate the football from 
the background. However, it is a more challenging task to 
distinguish between the ball and the stitching, and recon-
struct its edges correctly. First we apply popular algorithms 
for image segmentation. k-means is an algorithm which 
partitions the intensity values of the image into k clusters. 
We choose 3=k , and achieve the segmentation shown in 
Figure 1(b). The noise in the image results in rough 
boundaries. Another algorithm, which uses total variation 
regularization to eliminate noise, is the convexified version 
of the Chan-Vese level set method [5] proposed in [6]. Its 
disadvantage, though, is that it is designed to obtain binary 
segmentation; we see in Figure 1(c) that the third region, 
the stitching, has been lost. Then we apply our p-TV regu-
larization with 01.0=p . The result achieved after 20 itera-
tions is displayed in Figure 1(d). The noise does not affect 
the segmentation because the regularization term in the 
functional accounts for it, while at the same time, preserves 
the edges of the different regions. 

For our second example, we use the well-known camera-
man image. The intensity values range from 0 to 1, and we 
add Gaussian noise of standard deviation 0.1 (Figure 2(a)). 
We again have 01.0=p . For an initial guess we first use 
the noisy image. The result we obtain after 20 iterations is 
displayed in Figure 2(c). Although the initial image is a 
complex grayscale image, which even without noise is a 
difficult segmentation problem, the final image consists of 
only a few grayscale levels. The number of the final re-
gions and the crudeness of their boundaries can be regu-
lated through the regularization parameter λ. If we want the 
final image to be close to a binary image, we can imple-
ment the algorithm using as a starting point an image ob-
tained by thresholding the noisy image. The result after 10 
iterations has even fewer grayscale levels (Figure 2(e)). 
The observation that different starting points lead to differ-
ent final results shows the existence of local minima. This 
allows us to vary the segmentation of the image, which will 
reflect properties of the initial guess. 

We remark that the algorithm performs essentially the same 
with 0=p . On the one hand, the iteration (5) makes sense 
in this case; on the other hand, it is not solving an Euler-
Lagrange equation, as the functional Fp we are trying to 
minimize is undefined when 0=p . 

The performance of the method does not depend exclu-
sively on having an L2 norm as a data fidelity term. For 



example, we can implement it with an L1 norm, known for 

its ability to remove salt-and-pepper noise. On the cam-
eraman image in Figure 2(b), in which 10% of the pixels 
have been corrupted by salt and pepper noise, the algorithm 
exhibits the same behavior. Results with two different 
starting points are shown in Figures 2(d) and 2(f). A Pois-
son noise data fidelity term [7] can also be fit into the 
model. This flexibility of the algorithm makes it applicable 
to a wide variety of segmentation problems. 
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Figure 1: (a) An image of a football: the task is to find three separate regions in it; (b) segmentation obtained by the k-
means algorithm: the regions are corrupted by noise; (c) result obtained by a total variation regularized segmentation: only 
two regions are defined; (d) segmentation achieved by total p-variation regularization with a small p: the image is 
segmented in three regions with clear, accurate edges. 
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Figure 2: (a) The cameraman image corrupted by Gaussian noise; (b) the cameraman image corrupted by salt and pepper 
noise; (c) segmentation of (a) obtained with the noisy image as an initial guess; (d) segmentation of (b) obtained with the 
noisy image as an initial guess; (e) segmentation of (a) obtained with the thresholded image as an initial guess; (f) 
segmentation of (b) obtained with the thresholded image as an initial guess. 


